Influences \＆Preventions

of Granular Flow

Li－Heng Tsai（蔡力沍），Kang－Qi Liu（劉康祈）， Shao－Yang Lu（宮紹揚）

TA：Yu－Sheng Shen（沈聿際）
Advisor：Chia－Ming Kuo（郭家鉻）

Motivation

We are curious about the effect of retaining wall on mudslide.

Material	Representation
EVA balls	Collapse
BB shots	Mudslide

Theory (Vertical motion)

The sediment collapses under the effect of gravity, and the motion is equivalent to uniform acceleration.

$$
H(x, t)=H_{0}-\frac{1}{2} \alpha \mathrm{~g}\left(t-t_{0 z}\right)^{2}
$$

α : vertical effective gravity constant
$t_{0 z}$: the time when granular flow starts

Theory (Horizontal motion)

Since particles are affected by gravity and normal force, their motion should be proportional to uniform acceleration.

$$
L(z, t)=L_{0}+\frac{1}{2} \beta \mathrm{~g}\left(t-t_{0 x}\right)^{2}
$$

β : horizontal effective gravity constant
$t_{0 x}$: when the time the sliding gate starts to move.

Purpose

- Observe the phenomenon of the granular flow

1. A uniform accelerated motion phenomenon.
2. Final height and overflow distance. (H_{f} and $\Delta L_{f}=L_{f}-L_{0}$)

- Observe the effect of the retaining wall

1. Lost percentage of granular flow.
2. Overflow distance . $\left(\Delta L_{f}=L_{f}-L_{0}\right)$
3. EVA balls vs BB shots. (collapse vs mudslide)

Experimental setup

Angle steel
DC motor

Materials:

BB shots
EVA balls

|Experimental steps

Put the EVA balls or BB shots into the chamber.

Analyze the video without retaining wall.

Analyze the video with retaining wall.

|Experimental analysis
-Height and overflow distance

- Final height and overflow distance: H_{f} and $\Delta L_{f}=L_{f}-L_{0}$
- Time evolution of height and length: $H_{1} \ldots \ldots H_{5}, L_{1} \ldots \ldots L_{5}$
|Experimental analysis
- With retaining wall

Calculate the loss ratio under different aspect ratios.

$$
\begin{gathered}
\text { aspect ratio }=\frac{H_{0}}{L_{0}} \\
\text { loss ratio }=\frac{\text { Green Area }}{\text { Red Area }} \\
H_{r w}=\text { the height of retaining wall }
\end{gathered}
$$

Result: Horizontal analysis

The data conforms to the uniformly accelerated motion curve during the acceleration phase.

Result: Vertical analysis

All data during the acceleration phase seem to collapse on the uniformly accelerated motion fit curve.

Result: $\alpha \& \beta$

Result: Final height and Overflow length

$$
\frac{\Delta L_{f}}{L_{0}} \cong \begin{cases}0.26 a^{2.86} & \text { for } a \leq 2.01 \\ 0.99 a^{0.93} & \text { for } a \geq 2.01\end{cases}
$$

$\frac{H_{f}}{L_{0}} \cong \begin{cases}0.91 a^{0.59} & \text { for } a \leq 3 \\ 1.1 a^{0.45} & \text { for } a \geq 3\end{cases}$

Result

The turning point:

aspect ratio $=1.5$

aspect ratio $=4.5$

The slope changes from a straight line to a curve line as the aspect ratio increases.

Result: w/o retaining wall - Area

Retaining wall's height $\left(H_{r w}\right)=10 \mathrm{~cm}$

$$
L_{0}=8.5 \mathrm{~cm}
$$

$$
\text { loss ratio }=\frac{\text { Green Area }}{\text { Red Area }}
$$

When aspect ratio is larger than 2.63, the use of retaining wall becomes invalid

Result: w/o retaining wall

- Overflow distance

As the result, we can see that the retaining wall doesn't have an obvious effect on the length that the EVA balls can run over.

Result: with retaining wall

- Different particles

	$H_{0} / H_{r w}$ <turning point	$H_{0} / H_{r w}>$ turning point
BB shots	0.37	0.11
EVA balls	0.37	0.08

Conclusion

1. Uniformly accelerated motion: We confirm that the granular flow is uniformly accelerated motion, and the vertical and horizontal acceleration α and β are equal to 0.11 and 0.39 , respectively.
2. Final height and overflow distance: $\frac{H_{f}}{L_{0}} \cong\left\{\begin{array}{ll}0.91 a^{0.59} & \text { for } a \leq 3 \\ 1.1 a^{0.45} & \text { for } a \geq 3\end{array}, \frac{\Delta L_{f}}{L_{0}} \cong \begin{cases}0.26 a^{2.86} & \text { for } a \leq 2.01 \\ 0.99 a^{0.93} & \text { for } a \geq 2.01\end{cases}\right.$
3. Retaining wall:

- Retaining wall is useless when aspect ratio exceeds 2.6.
- It can reduce the loss of granular flow, but can't influence the overflow distance.
- Due to different fluidity, the loss ratio of BB shots is higher than that of EVA balls.

