【教案名稱】CC 放大器電路模擬

【 設計者 】張敏娟¹

1 輔仁大學物理系

【教學對象】大二

【教學時間】4 堂課

【課程目的】以電路模擬軟體 LTspice 做 CC 放大器的電路設計與模擬。

【課程單元】

- 1. 安裝電路模擬軟體 LTspice
- 2. 設計 CC 放大器偏壓電路
- 3. 模擬 CC 放大器的交流輸出
- 4. 模擬 CC 放大器的頻率響應
- 5. 模擬 CC 放大器的輸入、輸出阻抗

【課程器材】

- 1 LTspice 軟體 (免費·須自行安裝於電腦中)[1]
- 2 電腦 ×1 (Windows 與 MacOS 作業系統皆可)

【問題探究】

藉由電路模擬,理解電子學課本提到的CC放大器。

【課程實作內容】

以下示範為作者的 Mac OS 畫面,使用 Windows 也能執行的很好,但畫面略有不同。

第一堂課(50分鐘)安裝電路模擬軟體LTspice,做CC放大器偏壓電路設計

1.預備工具:安裝電路模擬軟體 LTspice 到電腦裡,如官網介紹 [1]。

2.電路設計:安裝 LTspice 後,開啟新檔案,做出 CC 放大器直流偏壓電路,如圖 1。 以下教案使用的參考書[2]。

圖1CC 放大器的直流偏壓電路

3. CC 放大器直流偏壓設計

電子學課本中,設計一個 CC 放大器直流偏壓時,跟 CE 放大器相比,交流電源輸入端 相同,都是 Base 極,但是輸出端不同,CE 放大器的輸出端是 C 極,而 CC 放大器的 輸出端是 E 極,既然輸出端在 E 極,因此不需要將 C 極的電流轉換成電壓輸出,省略 了 C 極的電阻。這個 CC 放大器不具備電壓放大的功能,但是具備電流與電功率放大 的功能。若 NPN 型電晶體的β值=300,V_{cc} = 10 V,I_e=10 mA,R_{b2} = 6.8kΩ,则根據 直流輸出電壓在交流擺盪中心的理論,得出以下式子:

$$V_b = V_{be} + \frac{V_{cc} - V_{be}}{2}$$
$$R_{b1} = \left(\frac{V_{cc} - V_b}{V_b}\right) * R_{b2}$$
$$V_e = \left(\frac{V_{cc} - V_{be}}{2}\right)$$
$$R_e = V_e / I_e$$

使用 $V_{be} = 0.65V \cdot 算出來的V_b = 5.325V, R_{b1} = 5.970k\Omega, V_e = 4.675V, R_e = 467.5\Omega \circ CC$ 放大器直流偏壓的三個電阻 · $R_{b1} \cdot R_{b2} \cdot R_e$ 就依上述設計完成。

第二堂課(50分鐘)模擬 CC 放大器的交流輸出

1.三個電阻的電阻值,取 $R_{b1} = 6k\Omega, R_{b2} = 6.8k\Omega, R_e = 470\Omega 輸入圖 1。再加入 2 個電 容<math>C_b \cdot C_e$ 。根據電子學課本內容, $C_b \cdot C_e$ 是為了避免外部電路與電晶體的輸入與輸出 端連結時,影響了電晶體的直流電壓值,加入電容可以讓電晶體 Base/Emitter 兩極

的直流電壓不受外部電路影響,這樣的電容稱為耦合電容。將此2個電容的電容值設 為10 μF。

2.假設輸入交流電壓為 $V_{in} = 0.01V \sin 1000t^{-1}$ 設定方式如圖 2。

3.從資料庫挑選 2N3904 這個電晶體,它的β值約 300。挑選方式如圖 3,按下 Pick new transistor,獲得想要的電晶體。圖 4 是挑選電晶體時出現的資料庫。
4.設定完畢後,設定直流模式:.op,如圖 5。完成直流分析電路圖,如圖 6。

Time Domain Function	Edit Voltage Source Vi	n
style: SIN	E(Voff Vamp Freq Td θ φ	<ncycles>)</ncycles>
	DC offset[V]:	0
	Amplitude[V]:	0.01
	Freq[Hz]:	1000
	Tdelay[s]:	
	θ[1/s]:	
	φ[°]:	
	Ncycles:	
Small Signal Parameters(AC)	Make this information	visible on the schematic 🗹
		1
	AC Phase[°]:	
	Make this informatio	n visible on the schematic 🗹
Parasitic Impedances		
	Series Resistance[Ω]: Parallel Capacitance[F]: Make this informatio	n visible on the schematic
	Cancel	ОК

圖 2 設定 $V_{in} = 0.01V \sin 1000t$

圖 3 從資料庫挑選 2N3904 電晶體。

Part No.	Manufacturer	Polarity	Vceo[V]	Ic[A]	SPICE .model
2N2222	NXP	npn	30	0.8	.model 2N2222 NPN(IS
2N3904	NXP	npn	40	0.2	.model 2N3904 NPN(IS
FZT849	Zetex	npn	30	7	.model FZT849 NPN(IS
ZTX1048A	Zetex	npn	17.5	5	.model ZTX1048A NPN(
2N4124	Fairchild	npn	25	0.2	.model 2N4124 NPN(Is
2N3391A	Fairchild	npn	25	0.5	.model 2N3391A NPN(I
2N5089	Fairchild	npn	25	0.1	.model 2N5089 NPN(Is
2N5210	Fairchild	npn	50	0.1	.model 2N5210 NPN(Is
2N2219A	NXP	npn	40	0.8	.model 2N2219A NPN(I
2N4401	Fairchild	npn	40	0.6	.model 2N4401 NPN(Is
Cancel					ОК

Pick a transistor from the database

Ec	dit Text on the Schemati	с			
How to netlist this text	Justification	Font Size			
Comment	Left 📀	1.5(default) ᅌ			
SPICE directive	Vertical Text				
.op					
Cancel Crt	line. OK				

圖 5 設定直流工作命令 .op

新作的新創意

圖 6 CC 放大器電路圖,設定直流模式

5.按下模擬執行(Run)後,點選 Add Traces,如圖 7。想知道電路節點上的電壓、電

流值,按下列表名稱即可。跟直流計算結果互相比對,會跟理論值差不多。

圖 7 添加訊號到作圖區 Add Traces

6.電子學課本提到·CC 放大器非電壓放大器·電壓增益A_v ≤ 1·透過觀察輸入跟輸出的交流信號·可以看到『不反相』與『不放大』的特性。CC 放大器是電流放大器與

功率放大器。而電流增益 A_I =電壓增益× $\frac{\begin{subarray}{c} g \chi g \phi \phi A R A I}{g h ar{w} g R B}$ = $A_V \times \frac{Z_{in}}{R_E} \cong \frac{Z_{in}}{R_E}$,所以電流增益在 等效輸入阻抗值獲得後,再做計算。功率增益是電壓增益 A_V 與電流增益 A_I 相乘,既然 電壓增益近似於 1.所以**功率增益近似於電流增益**。

7.透過 LTspice 的瞬態分析功能,可以先獲得電壓增益。設定瞬態分析時,需要做時間設定,如圖 8,例如設定測試時間 10m (s),因為頻率是 1kHz,所以週期是1/1kHz=1ms,因此 10ms 這個設定可觀測 10 個正弦波形,10ms/1ms=10。設定後,電路圖上會出現,tran 10m,如圖 9。

Edit Text on the Schematic							
How to netlist this text	Justification	Font Size					
Comment	Left 📀	1.5(default) ᅌ					
SPICE directive	Vertical Text						
.tran 10m							
Cancel Crtl-	line. OK						

圖 8 瞬態設定,測試時間 10m (s)。

圖 9 瞬態設定後的電路圖,圖上有.tran 10m

8.按下模擬執行(Run)後,先將模擬畫面分成上下兩格 Add Plot Pane,再依次點選 Add Traces,如圖 10,先選擇輸出電壓 V_{out} 、再選擇輸入電壓 $V_{in}(V(n004))$,如圖 11 呈現兩個波的相位不反向;輸出電壓 V_{out} 峰對峰值跟輸入電壓 V_{in} 的相同,電壓增益 ≅ 1。

圖 10 先將模擬畫面 Add Plot Pane,分成上下兩格(左)、再 Add

Traces 依次放入訊號(右)。

圖 11 輸出電壓V_{out}與輸入電壓V_{in}(V(n004)),兩波的相位不反相以及峰對峰值相
 同,電壓增益≅1。

9.以快速傅立葉轉換(Fast Fourier Transform; FFT), 觀察輸出波形。對著Vout波形任一點按下右鍵,選擇 View 選單中的 FFT, 可看到Vout的 FFT分析, 如圖 12。因為Vin為 1kHz 的交流信號, 那麼Vout 的交流輸出, 主波是 1kHz, 其他頻率的波為副波。主波可以理解為Vin被放大輸出的部分; 副波可以理解為Vin波形失真的部分。

圖 12 Vout 的 FFT 分析,主波 1kHz 很明顯,其餘為副波。副波可以理解為波形失

真。

第三堂課(50分鐘)模擬 CC 放大器的頻率響應

電子學課本提到 CC 放大器時,會先說明小信號交流理論,將電容當作短路,因為電容的阻抗為*Z_c* = 1/*jωC*,當頻率夠高的時候,電容的阻抗趨近於零,可以視為短路。 但是當頻率很低時,電容的阻抗不能忽略,增益會隨頻率而改變。 1.討論低頻響應時,把 CC 放大器分成兩個部分,輸入端 C_1 與輸出端 C_2 ,依照頻率響應理論計算出的 3dB 頻率值, $f_1 = \frac{1}{2\pi R_{eq1}C_1}, f_2 = \frac{1}{2\pi R_{eq2}C_2}$,由於通常輸入端阻抗 R_{eq1} 較高,所以 f_1 的值通常為低頻響應時的主宰頻率。

 2. 透過數據模擬,觀察 CC 放大器低頻響應,測試電容值的改變對 3dB 頻率的影響。

 測試 1,設定交流頻率範圍為 1Hz 到 10MHz(.ac dec 100 1 10e6)。將C₁改為變數

 C,且依序從10µF到100µF,改變間隔為 50µF(.step param C 10u 100u 50u),如圖

 13。

3. 模擬執行(Run)後,得到頻率響應波德圖,圖14。圖中實線為振幅,單位在左邊軸上;虛線為相位,單位在右邊軸上。圖中顯示當C₁值為10µ時,-3dB 低通頻率約
10Hz;而當C₁值為100µ時,-3dB 低通頻率則<1Hz。f₁的值為低頻響應時的主宰頻率,C₁為搭配此頻率的電容,此數值模擬可看出C₁值的確改變-3dB 低通頻率的位置。

圖 13 CC 放大器低頻響應測試,設定交流頻率範圍 (.ac dec 100 1 10e6)。將C₁改為 變數 C,且C₁依序從10µF到100µF,改變 step 為 50µF(.step param C 10u 100u 50u)。

圖 14 CC 放大器低頻響應測試波德圖。實線為振幅,單位在左邊軸上;虛線為相位, 單位在右邊軸上。圖中顯示當*C*₁值為 10μ*F*時,-3dB 低通頻率約 10Hz;而當*C*₁值為 100μ*F*時,-3dB 低通頻率則<1Hz。低頻衰弱的情況,以 10μ*F*較明顯。

4.測試 2,交流頻率範圍不變,將 C_1 改回 $10\mu F$,而 C_2 改為變數 C,且 C_2 依序從 $10\mu F$ 到 $100\mu F$,改變間隔為 $50\mu F$ (.step param C 10u 100u 50u),如圖 15。 5. 模擬執行(Run)後,得到頻率響應波德圖,圖 16。當 C_b 值為 $10\mu F$ -100 μF 時,-3dB

低通頻率仍為 10Hz · 且三線重疊。C₂為搭配頻率f₂的電容 · 此數值模擬可看出C₂值 的確不會改變-3dB 低通頻率的位置。

11

圖 15 CC 放大器低頻響應測試 2 · 交流頻率範圍不變 · 將 C_1 改為 $10\mu F$ · 而 C_2 改為變

圖 16 CC 放大器低頻響應測試 2,當C₂值為 10μF-100μF時,-3dB 低通頻率仍為 10Hz,且三線重疊。

第四堂課(50分鐘)模擬 CC 放大器的輸入輸出阻抗

電子學課本提到 CC 放大器,解釋了等效電路理論,其中等效輸入阻抗與等效輸出阻抗的測量,測試電路不同。不同之處在於當做等效輸入阻抗Z_{in}測量時,輸入端有個理想 想的測試交流電源,輸出端為開路;而做等效輸出阻抗Z_{out}測量時,輸出端有個理想 測試交流電源,輸入端為短路。

1. 等效輸入阻抗。將圖 15 修改,輸入端的理想交流電源 V_{in} 改名為 z-test,上方的節點也改名為 z-test,節點名稱修改,選擇 Label Net (圖 16 左),跳出對話框後填入 z-test (圖 16 右)。名稱的修改,是為了做圖時方便找到電壓 V(z-test)與電流 l(z-test)。去掉.step 的設定,將電容改為 $C_1 = C_2 = 10\mu$ F。測量等效輸入阻抗的電路設計 如圖 17。

圖 16 節點名稱修改設定為對節點按下右鍵,選擇 Label Net (左),跳出對話框後 填入 z-test (右)。

圖 17 測量等效輸入阻抗的電路設計圖。電壓與節點名稱的修改,是為了模擬做圖時 方便找到電壓 V(z-test)與電流 I(z-test)。

2. 模擬執行(Run)後,選擇 V(z-test)/I(z-test),如圖 18。等效輸入阻抗的波德圖如圖 19,不過,此時圖中縱軸阻抗單位是分貝 dB,需要修改為歐姆,所以在左邊分貝單 位按下右鍵,把分貝 Decibel 改為線性 Linear (歐姆),範圍選 Auto,如圖 20。改 完後,等效輸入阻抗的波德圖如圖 21。在低頻響應模擬時,-3dB低通頻率約為 10Hz,此時對應的**等效輸入阻抗值Z_{in}約 3.5k**Ω。前面提到,CC 放大器的**電流增益** $A_I = 電壓增益 \times \frac{等效輸入阻抗}{ 射極電阻} = A_V \times \frac{Z_{in}}{R_E} \cong \frac{Z_{in}}{R_E} = \frac{3.5k}{470} = 7.4$ 。

		Avalible	✓ Aster Data	isks match co	olons
requency Ic(Q1) I(Rb2)	V(n001) Ib(Q1) I(Rb1)	V(n003) le(Q1) I(Z-test)	V(n002) I(C2) I(Vcc)	V(z-test) I(C1)	V(vout) I(Re)
	E	xpression(s) to	o Add to Pl	ot	
/(z-test)/I(Z-	-test)				

圖 18 V(z-test)/I(z-test)的設定圖。

圖 19 輸入阻抗的波德圖,左邊縱軸單位是分貝 dB。

圖 20 將縱軸座標由分貝 Decibel 改為線性 Linear (歐姆)。

圖 21 等效輸入阻抗的波德圖,縱軸單位是歐姆。—3dB低通頻率約為 10Hz,對應的輸入阻抗值 Z_{in} 約 $3.5k\Omega$ 。

3. 等效輸出阻抗。將圖 17 修改,把輸入端的理想交流電源V_{in}刪除,改為短路接地。 把輸出端的V_{out}刪除,新增交流電源放在輸出端的位置。電壓與上方的節點皆改名為 z-test,方便做圖時找到電壓 V(z-test)與電流 I(z-test)。測量等效輸出電阻的電路設 計如圖 22。

執行模擬(Run),選擇 V(z-test)/I(z-test),輸出阻抗的波德圖,由分貝 Decibel 改為線性 Linear(歐姆),跟等效輸入阻抗做法相同。低頻響應模擬時,-3dB低通頻率約為 10Hz,對應的輸出阻抗值Z_{out}約 1.9kΩ,如圖 23。

16

圖 22 測量等效輸出電阻Zout的電路設計。電壓與節點名稱的修改,是為了模擬畫圖時方便找到電壓 V(z-test)與電流 I(z-test)。

V(z-test)/I(Z-test)							
^{20KΩ}							190°
18KΩ							
16KΩ				·····	,		170°
14KΩ							160°
12KΩ					1	11100	150°
10KΩ							140°
8KΩ							130°
6 κ Ω+-				<u> </u>	+		
4 κ Ω−†-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		/-		*		110°
2KΩ					+	11166	
0KΩ -	-i-i i i i i iii i		i i i i i i i i i i i i i i i i i i i	i i i i iiiiiij - i -	i i i iiiiiii i i	iniii i	i i i i i i i 90°
1Hz	: 10Hz	100Hz	1KHz	10KHz	100KHz	1MHz	10MHz

圖 23 輸出阻抗的波德圖,縱軸單位是歐姆。-3dB低通頻率約為 10Hz,對應的輸出

阻抗值 Z_{out} 約1.9 $k\Omega$ 。

【補充資料】

[1] 電路模擬軟體 LTspice 官網: https://www.analog.com/en/design-

center/design-tools-and-calculators/ltspice-simulator.html

[2] M2K SCOPY:電路設計、模擬測試、硬體裝置與除錯,作者:陳雲潮,出版社: 東華書局,出版日期:2022年1月1日。